Consid	sider the statement	SCORE:/15 PTS
	"Thrashing occurs only if the working set is too small."	
(Write	te your final answers in complete sentences without using any symbols or variables.)	
[a]	Write the contrapositive of the statement, using "if/then". IF THE WORKING SET IS NOT TOO SMALL,	
[b]	THEN THRASHING DOES NOT OCCUR Write a logically equivalent statement using "is necessary for", without using "if". THE WORKING SET BEING TOO SMALL IS MECESSARY FOR THRASHING TO OCCU	R_
	e the following statement <u>informally</u> . <u>Avoid ambiguous language,</u> r answer should NOT use the phrases "for all", "for every", "for each", "for any", "such that", "there e	SCORE: / 10 PTS xists".
	$\forall r \in P : \exists t \in E, \neg V(r, t)$ where $P = \text{set of all people}, E = \text{set of all countries}$ and $V(r, t) = \text{``r has visited t''}$	in Europe,
	NOBODY HAS VISITED EVERY SINGLE CO IN EUROPE	UNTRY
Write t	e the following statement symbolically, using TWO variables. State clearly the domains and predicate.	SCORE:/ 10 PTS
	"There is a reciprocal for every natural number." D = Z = {NATURAL NUMBERS} P(x,y) = "y is the reciprocal of x" o YXED, JYER: P(x,y)	r"xy=1"
	VxeD, Jyelk: P(x,y)	
Consid	sider the statement	SCORE: / 15 PTS
<i>s</i> .	"Students on the honor roll receive priority registration."	
[a]	P(x) = "x IS ON THE HONOR ROLL"	D, P(x)→Q(x)
	Q(x) = " x RECEIVES PRIORITY REGISTRATION	JUC
[b]	Write the negation of the statement informally. Your answer should NOT use the phrases "for all", "for every", "for each", "for any", "such that",	
	JXED: P(x) ~ ~Q(x) SOME STUDENT ROLL DOES NOT	ON THE HONOR

Indicate whether the	following arous	ment is valid o	r invalid S	Sunnart vaur answ	er usino a diaoram.
marcate whether the	TOTTO WITTE digu	mem is vand o	<i>n</i> myana. <u>c</u>	support your answ	ci using a diagrami.

SCORE: _____/ 10 PTS

Some math classes require a lot of work.

All hard classes require a lot of work.

Therefore, some math classes are hard classes.

CLASSES THAT REQUIREA LOT OF WORK

HARD CLASSES

INVALID

Prove that the following argument is valid using the Rules of Inference. Give the reason for each step as shown in lecture.

SCORE: ____ / 25 PTS

Do NOT rewrite any of the hypotheses using logical equivalences.

$q \rightarrow \sim s$	9-3~5	GIVEN
$\begin{array}{c} p \to r \\ w \to \sim r \end{array}$	~5-> 1	GIVEN
$\sim s \rightarrow r$ $p \lor q$	g→r	TRAN
∴~ W	P→r	GIVEN
	pvg	GIVEN
	, , _	CASE
		r GIVEN
	- ~ W	_

Determine if $(p \oplus q) \lor \sim p \equiv (p \leftrightarrow q) \rightarrow \sim q$. Show proper justification & state your final answer clearly. SCORE: ____/20 PTS $P \oplus Q \qquad P \oplus Q$

Let $A = \{-2,$	1, 3} and $B = \{-2, 0, 2\}$.	SCORE: / 25 PTS
Let $P(x, y)$	be the predicate " $x^2 + y$ is a multiple of 3" with domain $A \times B$ (i.e. $x \in A$ and $y \in B$).	
	the statement " $\forall x \in A, \exists y \in B :, P(x, y)$ " is true or false.	
$\frac{\text{Justify your a}}{x = -2}$	Hower as shown in lecture. Use as few examples/counterexamples as you need. He is a shown in lecture. Use as few examples/counterexamples as you need. He is a shown in lecture. Use as few examples/counterexamples as you need. He is a shown in lecture. Use as few examples/counterexamples as you need. He is a shown in lecture. Use as few examples/counterexamples as you need.	y=2
X = /	FUEB: 12+4 IS A MULTIPLE OF 3 TRUE	= $y=2$
X= 3		y=0
	THE STATEMENT IS TRUE	
	nal definition of a function used in discrete math. Use correct English. bolic logic and set notation, if you use it correctly.	SCORE:/ 10 PTS
	PLATION R FROM SET A TO SET B IS A FUN	CTION IFF
0 4	XEA, FYEB: XRY AND	
(2) Y	/xeA, YyeB, YzeB, (xRy xxRz) → y=	之
,		
Fill in the blan	ks. Your answers must be in English, not symbols .	SCORE:/ 10 PTS
[a]	$r \lor s$ is read as "r or s", and is called the DISJUNCTION OF Y	ANDS
[b]	$A \times B$ is read as "A cross B", and is called the CARTESIAN PROD	UCT OF AMOB
[c]	In the conditional " $k \to m$ ",	
	m is called the CONCLUSION and k is called the HYPO	THESIS
[d]	R is a proper subset of Q if and only if	
	EVERY ELEMENT OF RIS AN ELEMENT O	FQ AND
	THERE IS AN ELEMENT OF Q THAT IS N	OTINR.
[e]	The argument	
•	"Jennifer will enroll at Stanford in the fall only if she receives a scholarship from Sta	anford.
	Jennifer receives a scholarship from Stanford.	
	Therefore, Jennifer will enroll at Stanford in the fall"	

is an example of CONVERSE ERROR